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Profile in Nonlinear Chromatography Using the Lax- 
Wendroff Method 
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Abstract 

A comparison is made between the results obtained with the Lax-Wendroff and 
the characteristic algorithms for the integration of the system of partial 
differential equations of chromatography. The influence of the diffusion 
coefficient on the elution profiles is determined in the linear and the nonlinear 
cases by using two different sets of boundary conditions. and the results are 
compared. A new phenomenon is predicted in the nonlinear case, which has no 
equivalent in the linear case; the regressive behavior of the retention time of the 
band maximum when the diffusion coefficient increases from values near 0 to 
very high values. On the other hand, it is observed that the elution profiles 
predicted by the Lax-Wendroff method are relatively independent of the values of 
the space and time increment chosen for the calculation, the opposite of what has 
been reported with the characteristic algorithm. This will provide a suitable 
procedure for the numerical calculation of solutions of kinetic models. 

INTRODUCTION 

Molecular diffusion is a physical phenomenon of great importance in 
both linear and nonlinear chromatography. Different effects are con- 
trolled by diffusion, such as the axial dispersion and several of the 
sources of radial resistance to mass transfer between the stream of mobile 
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81 0 LIN, MA, AND GUIOCHON 

phase percolating through the bed of packing material and the stationary 
phase where the interaction(s) responsible for retention can take place. In 
this paper, however, we essentially consider the influence on the elution 
band profiles of the axial dispersion which results from molecular 
diffusion along the column axis and from the turbulence of the mobile 
phase stream (I). The former is due to the smoothing effect on 
concentration profiles of the molecular diffusion which, after Fick's law, 
acts to dampen concentration gradients and also depends on the 
tortuosity of the column packing. The latter appears in a fluid stream of 
very low Reynolds number because of the roughness of the channels 
open to flow between particles. For the same reason, the distribution of 
the lengths of the various flow lines has a finite width. These various 
phenomena affect the elution profiles in a complex way. In a first 
approximation, however, they can be treated as if they were the result of a 
unique diffusion phenomenon acting along the column axis, the axial 
diffusion. 

In linear chromatography, diffusion affects the value of the retention 
time of the band maximum. It has been shown that the retention time 
decreases monotonically with increasing value of the diffusion coefficient 
(2), since the first-order moment of the elution band is p, = to(l + FG) 
(where G is the slope of the isotherm at the origin and F is the phase ratio) 
and the third-order, centered moment of the elution profile, which is 
related to the skew of the profile, is a function of the mass transfer and the 
diffusion coefficients and is always positive. Thus, it is only if the axial 
diffusion coefficient is zero and the mass transfer coefficient is large that 
the third moment is zero, the profile is symmetrical, and its retention time 
is equal to the first moment. When the axial dispersion is finite, the 
retention time of the band maximum is obviously smaller than the first 
moment; it decreases with increasing value of the dispersion coefficient. 
In most practical cases of linear chromatography, however, the axial 
diffusion coefficient is small, and the difference between the first moment 
and the retention time of the band maximum is small (1). 

In nonlinear chromatography, the effect of axial dispersion is different. 
A regressive variation of the retention time with increasing value of the 
dispersion coefficient takes place. When the dispersion coefficient is 
decreased from a high initial value, the retention time of the band 
maximum increases at first (3-5). When the coefficient becomes lower 
than a certain threshold, however, a shock layer (6) appears on one side 
of the profile and becomes thinner and thinner. From then on, the 
retention time decreases with decreasing axial dispersion coefficient. This 
phenomenon illustrates the important character of the influence of the 
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INFLUENCE OF AXIAL DISPERSION 81 1 

axial dispersion on the band profile in nonlinear chromatography, i.e., 
the coupling between axial dispersion and nonlinear behavior. 

The nonlinear behavior of band migration at high concentrations 
results from the concentration dependence of the velocity associated with 
each concentration wavelet. This concentration dependence causes the 
self-sharpening of some part of the profile (e.g., its front in the case of a 
Langmuir isotherm), while contributing to the broadening of the profile 
in some other parts (e.g., its rear in the case of a Langmuir isotherm). The 
extent of the self-sharpening effect depends on the relative magnitude of 
the isotherm curvature (source of the nonlinear behavior) and the 
dispersion coefficient (7). If the self-sharpening effect is weak, the band 
becomes unsymmetrical and tails (convex isotherms, e.g., Langmuir, 
front shock and diffuse tail) or leads (concave isotherms, tail shock and 
diffuse front). If the effect is large, a concentration shock layer (or even a 
concentration shock (discontinuity) if the dispersion coefficient is zero) 
takes place. The effect of molecular diffusion on the band profile is of 
smoothing and broadening, resulting in more dilution of the sample in 
the mobile phase, hence changing the migration velocity and the extent 
of self-sharpening of the profile. 

The effect of axial dispersion on the elution profiles of high concentra- 
tion chromatographic bands has been discussed by several authors (4-9). 
Perturbation analysis permitted the study of weak nonlinear behavior (8). 
Houghton (4)  and Yeroshenkova et al. (5) gave a complete solution of the 
band profile in the case of moderate or strong nonlinear behavior, re- 
sulting in the formation of shock layers. The occurrence of these shock 
layers and the influence of axial dispersion on them affects the peak 
position and its shape (6,lO). The solution derived by Houghton permits 
a correct prediction of the variation of the retention time of the band 
maximum at the onset of nonlinear behavior (4, 11,12). This approach 
involves the replacement of the mass balance equation for the solute by a 
Burger equation, which can be solved in this case (4, 11). This 
simplification, however, loses the mass conservation of the profile and 
prevents the extension of the solution to very high concentrations. An 
algorithm permitting a numerical solution of one of the possible systems 
of equations accounting for a kinetic model of chromatography has been 
discussed previously and some results presented (13). 

Most of the work previously published on the mathematical properties 
of the various systems of equations which represent the classical models 
of chromatography have mainly dealt with the ideal model in which 
constant equilibrium between the mobile and the stationary phase is 
assumed (14). A detailed, accurate study of the influence of axial 
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81 2 LIN. MA, AND GUIOCHON 

dispersion on the band profile and especially on the thickness of the 
shock layers in a wide range of values of the axial dispersion coefficient, 
e.g., for D = ( k l ,  is difficult. Characteristic finite difference methods 
using an artificial dispersion can be used for the cases when D is small, 
for example, with D = 10-s-10-4 cm2/s (10). For larger values of D, the 
values of the space and time increments to be used for a proper 
simulation of the axial dispersion and to satisfy the Courant-Friedrichs- 
Lewy condition become too large, and unsatisfactory results are obtained. 
Average center difference and jump point schemes are suitable for large 
values of D. 

In the present paper we use a Lax-Wendroff scheme which permits an 
investigation of the influence of the dispersion coefficient in a large range 
of values. This approach has allowed the demonstration of the regressive 
variation of the retention time of the band maximum with increasing 
dispersion coefficient at constant sample size. We have also examined 
the influence on the elution band profile of axial diffusion during 
injection of the sample. Profiles corresponding to different boundary 
conditions, some more realistic than the classical rectangular pulse 
injection, have been studied. 

MATHEMATICAL MODEL AND LAX-WENDROFF SCHEME 

In the following we discuss the mathematical model of chroma- 
tography and its numerical solution in the case of a single component 
sample. Most observations and comments apply as well to a multi- 
component problem. The main difference in the latter case comes from 
the complexity of the multicomponent isotherm function which must be 
used to account for the competition between the mixture components. 

1. Mathematical Model 

The mathematical model of chromatography for one compound 
includes the mass balance equation for this compound: 

dc + F % +  U d x  d C  = D -  aZc 

at a x 2  

In this equation, c and q are the concentrations of the studied 
compound in the mobile and stationary phase, respectively, t is the time 
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INFLUENCE OF AXIAL DISPERSION 81 3 

and x the abscissa along the column, F is the phase ratio, u is the local 
velocity of the mobile phase, and D is the coefficient of axial dispersion 
which accounts for the molecular diffusion, the tortuosity of the packing, 
and the so-called eddy diffusion ( I ) .  The latter is related to the 
hydrodynamics of the mobile phase stream percolating across the 
column packing. 

We can neglect the mass balance equation for the mobile phase if we 
assume the proper convention for adsorption (15). Equation (1) contains 
two functions of the time and abscissa along the column, q and c. We 
need another equation to relate these two functions. We use the kinetic 
equation which accounts for interphase mass transfer: 

wheref(c) is the isotherm equation of the compound in the phase system 
investigated, i.e., the concentration of the compound in the stationary 
phase at equilibrium with the concentration c in the mobile phase. In Eq. 
(2), K is a rate constant, the coefficient of mass transfer. The kinetic Eq. 
(2) writes that the rate of change in the concentration of the solute in the 
stationary phase is proportional to the deviation from equilibrium, which 
is valid only if the system is always close to equilibrium, i.e., provided that 
the column efficiency is high. 

In order to proceed further, we must complete this system of equations 
by the initial and boundary conditions. The following condition simu- 
lates the pulse injection of a pure compound, at a constant concentration 
in the mobile phase stream, during a certain period of time: 

Prior to this injection, the column was empty, which is expressed by the 
initial condition: 

q(x ,O)  = c(x,O) = 0, x > 0 (4) 

Equations (1) to (4) constitute the simplest form of the general 
mathematical model of chromatography. It includes a very simple kinetic 
equation which, in fact, assumes that the system is always near 
equilibrium. Otherwise, the kinetics of interphase equilibration would be 
more complex than given by Eq. (2). As a matter of fact, detailed studies 
of this kinetics, undertaken within the framework of the linear model, 
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81 4 LIN, MA, AND GUIOCHON 

have resulted in extremely complicated sets of equations (16,17). Besides 
the adsorption kinetics which is described by Eq. (2), several stages of 
diffusion are involved, especially the diffusion across the interface 
between the mobile phase stream percolating through the column 
packing and the stagnant mobile phase contained within the particles, 
and the molecular diffusion inside the pores of these particles. 

The model just described cannot be solved by an analytical expression 
of the elution profile. A related model, formulated by Thomas (18), has 
been studied by Goldstein (19). Instead of Eq. (2), it uses Langmuir 
adsorption kinetics. The relation between Eq. (2) and the Langmuir 
kinetic equation, i.e., between the present model and Thomas’, has been 
discussed by Hiester and Vermeulen (20). An analytical solution of the 
Thomas model has been recently derived by Wade et al. (21). In the 
general case, however, solutions of a kinetic model must be calculated 
with the help of a computer. 

Several general methods are available to calculate numerical solutions 
of systems of partial differential equations such as the one discussed here. 
Finite difference methods, finite elements methods, and collocation 
could be used. Since the problem studied involves only one space 
dimension, the column length, the computational speed is less critical 
than with similar three-dimensional problems. We have opted for finite 
difference methods which do not require fixed boundary conditions for 
the column exit, as finite element methods do. There are several such 
methods available, however, and we now compare two of them which we 
have used. 

2. Lax-Wendroff Finite Difference Equation 

In this case the partial differential Eqs. (1) and (2) are replaced by the 
following algebraic, finite difference Eqs. ( 5 )  and (6), respectively: 

= o  ( 5 )  

and: 
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INFLUENCE OF AXIAL DISPERSION 81 5 

A program implementing this numerical solution has been written. 
The results obtained are discussed in a later section. 

3. The Characteristic Finite Difference Equation 

In previous work we have used another numerical scheme for the 
calculation of numerical solutions of the mathematical model of 
chromatography by using the simplifying assumption called the ideal 
model. This numerical scheme is based on the characteristic equation 
(10)- 

In the ideal model it is assumed that the column efficiency is infinite, 
so changes in elution band profiles are due only to the thermodynamics 
contribution, i.e., to the nonlinear behavior of the equilibrium isotherm. 
The coefficient D in Eq. (1) is assumed to be zero, and Eq. ( 2 )  is replaced 
by q = f ( c ) .  The results of this simulation have been published (Z3), and 
excellent agreement between these predictions and experimental results 
have been demonstrated (22). The numerical errors made during the 
calculation and which are due to the finite character of the time and 
space increments which must be used, act as the contribution of a 
diffusion coefficient. The conditions to be satisfied in order to permit the 
simulation of real columns with a finite, albeit large, efficiency have been 
discussed (23). This latter work constitutes the basis of the semi-ideal 
model of chromatography and justifies the use of a finite difference 
method for the numerical calculation of solutions of the chromato- 
graphic model (24). 

A finite difference equation, similar to Eq. (5 ) ,  can be written for the 
numerical calculation of solutions of Eq. (1). Now, of course, the axial 
dispersion coefficient is no longer zero. The equation becomes 

c,” - cl”-l D 
+ 4;+l - 4: - - (c;+l - 2c; + c;-,, = 0 

c,”“ - c; 

r T h h 2  + U  

( 7 )  

Equation (6) is unchanged in this case. 

4. Comparison between the Lax-Wendroff and the 
Characteristic Scheme 

The major difference between Eqs. ( 5 )  and (7) is the introduction in the 
former of an additional dispersion term which cancels out the effect of 
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81 6 LIN, MA, AND GUIOCHON 

the artificial dispersion introduced by the finite character of the time and 
space increments used for the numerical integration of the partial 
differential Eq. ( l ) ,  since 

and: 

where a is the Courant number and (uh/2)(1 - a) is the artificial 
dispersion coefficient. 

Accordingly, the accuracy of the numerical calculation performed 
according to Eq. ( 5 )  is much better than that made following Eq. (7). The 
numerical errors made with the Lax-Wendroff scheme are of the second 
order, i.e., of the order of (h2 + t2) (25). This means that the numerical 
solutions of the model calculated using the Lax-Wendroff scheme are 
relatively independent of the numerical values chosen for the time, 5, and 
the space, h, increments. The Lax-Wendroff scheme in the nonlinear 
case, however, contains an additional term (25). 

This is a necessary quality in a numerical scheme to be used for the 
calculation of solutions of the system of Eqs. (1) to (4), since Eqs. ( 1 )  and 
(2) contain the axial dispersion and the resistance to mass transfer 
responsible for the finite efficiency of chromatographic columns. Then, 
the characteristic scheme used for the calculation of numerical solutions 
of the ideal model would give erroneous results. As shown above, this 
scheme introduces first-order errors which can be adjusted to provide 
approximate solutions of the ideal model which are in excellent 
agreement with experimental results, because the first-order errors can 
be adjusted, by a proper choice of the integration increments, to replace 
the band-broadening contributions neglected in the ideal model (13,22). 
With a nonideal kinetic model, such as the one discussed here, these 
contributions would be counted twice, which is not acceptable. 
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INFLUENCE OF AXIAL DISPERSION 81 7 

5. Effect of Different Boundary Conditions 

The previous discussion has illustrated the importance of dispersion 
effects in chromatography. We cannot neglect the influence of axial 
dispersion on band profiles during the migration of the sample bands 
along the column. We cannot neglect it during injection either. Proper 
boundary conditions are required in order to achieve a realistic 
simulation of the band profile. 

Two kinds of boundary conditions are classically used by chemical 
engineers for problems of that type. The first one of these conditions is 
the following: 

c(x = 0, t )  = w ( t )  and c(x = m, t )  is finite (10) 

It belongs to the first class of boundary conditions in mathematics. The 
second type of conditions used is the Danckwerts boundary condition, 
which belongs to the third class and is written as follows, in the present 
case: 

ac c - D - = + ( t ) ,  dx X = O  

While Eq. (10) does not consider diffusion during injection, it is taken 
into account by Eq. (1 1). I f  we use a finite difference method, we may 
write the first equation in the Condition (1 1) as follows: 

If D = 0, this condition degenerates into a condition of the first class. 
From Eq. (12), we have 

h 
D c;; = - o n  - c;( 1 - 5 

Obviously, different boundary conditions will lead to different band 
profiles in nonlinear chromatography, since these conditions correspond 
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2-  

x 

to different injection bands. They will influence differently the formation 
of concentration shocks or shock layers, the retention time, and the entire 
profile. Figure 1 shows the profiles of one first-class injection (i.e., a 
rectangular pulse with a maximum concentration C = 5 mM and a width 

Z 

l- 
Q 

Z 
W 
0 
Z 
0 
0 

0 

E 

.o 
TIME 

FIG. 1 .  Injection profiles corresponding to the different boundary conditions used. 1: First- 
class condition (rectangular pulse). 2: Third-class condition, see Eq. (1 I), D = 0.04 cm2/s. 3: 

Third-class condition. D = 0.08 cm2/s. 4 Third-class condition. D = 0.12 cm2/s. 
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INFLUENCE OF AXIAL DISPERSION 81 9 

of 1 s) and of three different Danckwerts injections, with increasing 
values of the diffusion coefficient. The similarity with the profiles 
actually recorded for injection bands (26) is striking. 

RESULTS AND DISCUSSION 

The results of different simulations carried out using a program 
implementing the Lax-Wendroff scheme for the calculation of numerical 
solutions of the kinetic model of chromatography (Eqs. 1 to 4) discussed 
above are shown in Figs. 2 to 5. In each case, calculations were made for a 
constant size sample, with decreasing values of the axial dispersion 
coefficient. The sample size is large and the retention times are very 
different whether the isotherm is linear (Figs. 3 and 5 )  or nonlinear (Figs. 
2 and 4). The numerical values of the coefficients used in this work are 
reported in Table 1. The retention times obtained for the simulated 
profiles shown in Figs. 2 to 5 are reported in Table 2. Figures 2 and 3 
correspond to a first-class boundary codnition; Figs. 4 and 5 to a third- 
class one. 

In all cases, with a linear or a nonlinear isotherm and with a first- or a 
third-class boundary condition (injection), when starting from very large 
values of the dispersion coefficient and reducing this coefficient pro- 
gressively, we observe that the retention time increases with decreasing 
dispersion coefficient (see Table 2 and Figs. 2 to 5).  The major difference 
between a linear and a nonlinear isotherm is that in the former case the 
retention time always increases when the dispersion Coefficient tends 
toward zero (Figs. 3 and 5) ,  while in the latter case the retention time 
begins to decrease when the shock layer appears (see Figs. 2 and 4, axial 
dispersion coefficient between 0.012 and 0.04 cm’/s) and continues to 
decrease with decreasing value of the axial dispersion coefficient until 
this coefficient becomes zero. This last effect is in agreement with the 
prediction derived from the Houghton equation (4,11).  Nevertheless, the 
influence of the dispersion coefficient, even in a wide range of variation, 
is much smaller than that of the mass transfer Coefficient (13). 

Comparison between Figs. 2 and 4 (or Figs. 3 and 5 in the linear case) 
illustrates the influence of the boundary conditions (injection band 
profile). With a third-class boundary condition (diffuse injection profile), 
the retention times of the band maxima are larger than they are with a 
first-class boundary condition (rectangular pulse) when the dispersion 
coefficient is large. The effect reverses at low values of the axial 
dispersion coefficient. The same variation of the difference between the 
retention times of the bands obtained with a first- and a third-class 
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FIG. 2. Band profiles for a nonlinear isotherm. Decreasing values of the axial dispersion 
coefficient. First-class boundary condition (Eq. 10). Numerical values of the parameters in 
Table 1 .  Retention times of the maximum of the bands in Table 2. 1: D = 0.120 cm2/s. 2: 
D = 0.080 cm2/s. 3: D = 0.040 cm2/s. 4: D = 0.012 cm2/s. 5: D = 0.008 cm2/s. 6:  D = 0.004 

cm2/s. 
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TABLE 1 
Experimental Conditions for the Simulations Reported in 

Figs. 2 to 5 

Column length: 5 cm inner diameter: 4.6 mm; phase ratio: 0.75 
Flow velocity: 0.25 cm/s (2 mL/min) 
Parameters of the Langmuir isotherm: a = 9. b = (q = ad(  1 + bc)) 
Sample size: 0.41 mmol 

TABLE 2 
Influence of the Diffusion Coefficient on the Retention Time (s)" 

Linear isotherm Nonlinear isotherm 

First-class Third-class First-class Third-class 
D boundary boundary boundary boundary 
(cm2/s) condition condition condition condition 

0.120 106.39 117.04 86.40 98.40 
0.080 119.19 126.54 96.00 104.00 
0.040 135.20 137.96 104.00 107.20 
0.012 147.95 147.59 102.40 101.60 
0.008 150.1 1 149.24 99.20 98.40 
0.004 152.79 151.20 96.00 94.40 

"Sample size: 1.53 mmol. 

injection function is observed for a linear and a nonlinear isotherm (see 
Table 2). The change in the sign of this difference is observed for 
approximately the same value of the axial dispersion coefficient (-0.020 
cm2/s) in both cases. 

The data in Table 3 show that the same regressive variation of the 
retention time is observed with a large change of the sample size. The 
range of retention time varies with the sample size because, with a 
Langmuir isotherm, the retention time of the band maximum decreases 
with increasing sample size, but the relative variation of the retention 
time remains comparable. Obviously, for a linear isotherm there is no 
change in the direction of variation of the retention time with changing 
sample size. 

As pointed out in a previous section, the Lax-Wendroff scheme 
includes only second-order errors, which makes the result relatively 
insensitive to the values selected for the space and time increments in the 
numerical integration. The artificial, numerical dispersion coefficient 
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FIG. 3. Band profiles for a linear isotherm. Decreasing values of the dispersion axial 
coefficient. First-class boundary condition (Eq. 10). Numerical values of the parameters in 
Table 1. Numbers on curves, see Fig. 2. Retention times of the maximum of the bands in 

Table 2. 
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~~ ~ 

80 160 24 0 320 400 
TIME 

FIG. 4. Band profiles for a nonlinear isotherm. Decreasing values of the dispersion 
coefficient. Third-class boundary condition (Eq. 13). Numerical values of the parameters in 
Table 1 .  Numbers on curves, see Fig. 2. Retention times of the maximum of the bands in 

Table 2. 
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FIG. 5. Band profiles for a linear isotherm. Decreasing values of the dispersion coefficient. 
Third-class boundary condition (Eq. 13). Numerical values of the parameters in Table 1. 
Numbers on curves, see Fig. 2. Retention times of the maximum of the bands in Table 2. 
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TABLE 3 
Influence of the Diffusion Coefficient 
and the Sample Size on the Retention 

Time (sp 

Sample size (mmol) 
D 
(cm2/s) 0.41 1.53 3.26 

0.120 100.87 86.40 70.25 
0.080 112.98 96.00 77.01 
0.040 126.49 104.00 80.88 
0.012 133.86 102.40 75.43 
0.008 133.55 99.20 73.33 
0.004 131.20 96.00 71.20 

ONonlinear isotherm, first-class 
boundary condition. 

associated with this scheme is zero. The comparison between Figs. 6 and 
7 illustrates the difference between the Lax-Wenfroff and the character- 
istic schemes. A threefold variation in the space increment of integration 
results in the former case in a small shift of the profile without any 
change of its shape or width. With the characteristic scheme it results in a 
wider profile, corresponding to a three times larger column HETP, as 
already observed (23,24). This result is important for three reasons. 

First, it confirms that the profiles obtained by the procedure described 
here and which are illustrated by the results shown in Figs. 2 to 5 are 
accurate. Second, it permits the use of relatively large increments for the 
calculation of numerical solutions of the equation system, even when the 
mass transfer kinetics is fast and the axial dispersion is small, i.e., for 
high or very high efficiency columns. Such simulations were difficult or 
impossible using the previous, characteristic scheme (7) because, in this 
case, the computing time is proportional to the square of the efficiency of 
the simulated column and becomes prohibitively long for columns 
exceeding about 20,000 theoretical plates. 

Finally, this method may permit an easy solution of the multicom- 
ponent problem. Because there can be only one value used for the space 
and the time increments during the calculation of the band profiles for a 
multicomponent sample, the same values must be used for the derivation 
of the whole chromatogram. On the other hand, the rules for the selection 
of the values of these increments give different results when applied to the 
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-1 

2 

100 120 140 160 180 200 220 240 
TIME 

FIG. 6. Profiles obtained with the characteristic scheme for hvo different sets of integration 
increments. 5 = 0.001 s. 1: H = 0.02 cm. 2: H = 0.06 cm. 
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100 120 140 160 180 200 220 240 

TIME TIME 

FIG. 7. Profiles obtained with the Lax-Wendroff scheme for two different sets of integration 
increments (compare with Fig. 6). t = 0.001 s. 1: H = 0.02 cm. 2: H = 0.06 cm. 
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different components of a mixture (23). This means that by selecting a 
single set of values for the calculation, we assume a relationship between 
the efficiency of the simulated column and the limit retention at infinite 
dilution of the mixture components (27). The problem is minor when the 
separation of closely eluted components of binary mixtures is investi- 
gated, but become serious for the simulation of gradient elution. The use 
of a Lax-Wendroff scheme permits a solution of this problem. Con- 
versely, this approach is more complex and deliate, as the use of this 
scheme requires that both the axial dispersion coefficient and a global 
mass transfer resistance coefficient, which account together for the 
column efficiency, be selected independently. 

Oscillations seem to occur frequently in the numerical solutions of 
partial differential equations, especially when high accuracy solutions 
are searched for. The conditions which are prevalent in nonlinear 
chromatography tend to favorize this phenomenon: discontinuous 
boundary conditions, very fast mass transfer between phses (or even 
infinitely fast mass transfers, e.g., in the ideal model), very small values of 
the axial dispersion coefficient, strongly nonlinear isotherms, and choice 
of small values of the integration increments because of physical 
constraints. The Lax-Wendroff scheme we have used here permits the 
minimization of the oscillations if it uses relatively large integration 
increments and a continuous boundary condition. Furthermore, the 
latter makes more physical sense since, whatever care is taken to achieve 
a rectangular pulse injection, some extent of axial dispersion always takes 
place in the transfer of the sample to the column. Most injection bands 
are exponentially convoluted rectangular pulses or Gaussian profiles. 
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