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Abstract

A comparison is made between the results obtained with the Lax-Wendroff and
the characteristic algorithms for the integration of the system of partial
differential equations of chromatography. The influence of the diffusion
coefficient on the elution profiles is determined in the linear and the nonlinear
cases by using two different sets of boundary conditions, and the results are
compared. A new phenomenon is predicted in the nonlinear case, which has no
equivalent in the linear case; the regressive behavior of the retention time of the
band maximum when the diffusion coefficient increases from values near 0 to
very high values. On the other hand, it is observed that the elution profiles
predicted by the Lax-Wendroff method are relatively independent of the values of
the space and time increment chosen for the calculation, the opposite of what has
been reported with the characteristic algorithm. This will provide a suitable
procedure for the numerical calculation of solutions of kinetic models.

INTRODUCTION

Molecular diffusion is a physical phenomenon of great importance in
both linear and nonlinear chromatography. Different effects are con-
trolled by diffusion, such as the axial dispersion and several of the
sources of radial resistance to mass transfer between the stream of mobile

Copyright © 1989 by Marcel Dekker, Inc.
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phase percolating through the bed of packing material and the stationary
phase where the interaction(s) responsible for retention can take place. In
this paper, however, we essentially consider the influence on the elution
band profiles of the axial dispersion which results from molecular
diffusion along the column axis and from the turbulence of the mobile
phase stream (/). The former is due to the smoothing effect on
concentration profiles of the molecular diffusion which, after Fick’s law,
acts to dampen concentration gradients and also depends on the
tortuosity of the column packing. The latter appears in a fluid stream of
very low Reynolds number because of the roughness of the channels
open to flow between particles. For the same reason, the distribution of
the lengths of the various flow lines has a finite width. These various
phenomena affect the elution profiles in a complex way. In a first
approximation, however, they can be treated as if they were the result of a
unique diffusion phenomenon acting along the column axis, the axial
diffusion.

In linear chromatography, diffusion affects the value of the retention
time of the band maximum. It has been shown that the retention time
decreases monotonically with increasing value of the diffusion coefficient
(2), since the first-order moment of the elution band is y, = t,(1 + FG)
(where G is the slope of the isotherm at the origin and F is the phase ratio)
and the third-order, centered moment of the elution profile, which is
related to the skew of the profile, is a function of the mass transfer and the
diffusion coefficients and is always positive. Thus, it is only if the axial
diffusion coefficient is zero and the mass transfer coefficient is large that
the third moment is zero, the profile is symmetrical, and its retention time
is equal to the first moment. When the axial dispersion is finite, the
retention time of the band maximum is obviously smaller than the first
moment; it decreases with increasing value of the dispersion coefficient.
In most practical cases of linear chromatography, however, the axial
diffusion coefficient is small, and the difference between the first moment
and the retention time of the band maximum is small (/).

In nonlinear chromatography, the effect of axial dispersion is different.
A regressive variation of the retention time with increasing value of the
dispersion coefficient takes place. When the dispersion coefficient is
decreased from a high initial value, the retention time of the band
maximum increases at first (3-5). When the coefficient becomes lower
than a certain threshold, however, a shock layer (6) appears on one side
of the profile and becomes thinner and thinner. From then on, the
retention time decreases with decreasing axial dispersion coefficient. This
phenomenon illustrates the important character of the influence of the
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axial dispersion on the band profile in nonlinear chromatography, i.e.,
the coupling between axial dispersion and nonlinear behavior.

The nonlinear behavior of band migration at high concentrations
results from the concentration dependence of the velocity associated with
each concentration wavelet. This concentration dependence causes the
self-sharpening of some part of the profile (e.g., its front in the case of a
Langmuir isotherm), while contributing to the broadening of the profile
in some other parts (e.g., its rear in the case of a Langmuir isotherm). The
extent of the self-sharpening effect depends on the relative magnitude of
the isotherm curvature (source of the nonlinear behavior) and the
dispersion coefficient (7). If the self-sharpening effect is weak, the band
becomes unsymmetrical and tails (convex isotherms, e.g., Langmuir,
front shock and diffuse tail) or leads (concave isotherms, tail shock and
diffuse front). If the effect is large, a concentration shock layer (or even a
concentration shock (discontinuity) if the dispersion coefficient is zero)
takes place. The effect of molecular diffusion on the band profile is of
smoothing and broadening, resulting in more dilution of the sample in
the mobile phase, hence changing the migration velocity and the extent
of self-sharpening of the profile.

The effect of axial dispersion on the elution profiles of high concentra-
tion chromatographic bands has been discussed by several authors (4-9).
Perturbation analysis permitted the study of weak nonlinear behavior (8).
Houghton (4) and Yeroshenkova et al. (5) gave a complete solution of the
band profile in the case of moderate or strong nonlinear behavior, re-
sulting in the formation of shock layers. The occurrence of these shock
layers and the influence of axial dispersion on them affects the peak
position and its shape (6, 10). The solution derived by Houghton permits
a correct prediction of the variation of the retention time of the band
maximum at the onset of nonlinear behavior (4, 11, 12). This approach
involves the replacement of the mass balance equation for the solute by a
Burger equation, which can be solved in this case (4, /I). This
simplification, however, loses the mass conservation of the profile and
prevents the extension of the solution to very high concentrations. An
algorithm permitting a numerical solution of one of the possible systems
of equations accounting for a kinetic model of chromatography has been
discussed previously and some results presented (/3).

Most of the work previously published on the mathematical properties
of the various systems of equations which represent the classical models
of chromatography have mainly dealt with the ideal model in which
constant equilibrium between the mobile and the stationary phase is
assumed (/4). A detailed, accurate study of the influence of axial
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dispersion on the band profile and especially on the thickness of the
shock layers in a wide range of values of the axial dispersion coefficient,
e.g, for D = 0—1, is difficult. Characteristic finite difference methods
using an artificial dispersion can be used for the cases when D is small,
for example, with D = 107°-107* cm?/s (10). For larger values of D, the
values of the space and time increments to be used for a proper
simulation of the axial dispersion and to satisfy the Courant-Friedrichs-
Lewy condition become too large, and unsatisfactory results are obtained.
Average center difference and jump point schemes are suitable for large
values of D.

In the present paper we use a Lax-Wendroff scheme which permits an
investigation of the influence of the dispersion coefficient in a large range
of values. This approach has allowed the demonstration of the regressive
variation of the retention time of the band maximum with increasing
dispersion coefficient at constant sample size. We have also examined
the influence on the elution band profile of axial diffusion during
injection of the sample. Profiles corresponding to different boundary
conditions, some more realistic than the classical rectangular pulse
injection, have been studied.

MATHEMATICAL MODEL AND LAX-WENDROFF SCHEME

In the following we discuss the mathematical model of chroma-
tography and its numerical solution in the case of a single component
sample. Most observations and comments apply as well to a multi-
component problem. The main difference in the latter case comes from
the complexity of the multicomponent isotherm function which must be
used to account for the competition between the mixture components.

1. Mathematical Model

The mathematical model of chromatography for one compound
includes the mass balance equation for this compound:

o, pda, 0 _p P
FPARIL PRI Ml i e ()

In this equation, ¢ and ¢ are the concentrations of the studied
compound in the mobile and stationary phase, respectively, z is the time
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and x the abscissa along the column, F is the phase ratio, u is the local
velocity of the mobile phase, and D is the coefficient of axial dispersion
which accounts for the molecular diffusion, the tortuosity of the packing,
and the so-called eddy diffusion (/). The latter is related to the
hydrodynamics of the mobile phase stream percolating across the
column packing.

We can neglect the mass balance equation for the mobile phase if we
assume the proper convention for adsorption (15). Equation (1) contains
two functions of the time and abscissa along the column, ¢ and ¢. We
need another equation to relate these two functions. We use the kinetic
equation which accounts for interphase mass transfer:

0q/0t = K|f(c) — 4] (2)

where f(c) is the isotherm equation of the compound in the phase system
investigated, i.e., the concentration of the compound in the stationary
phase at equilibrium with the concentration ¢ in the mobile phase. In Eq.
(2), K is a rate constant, the coefficient of mass transfer. The kinetic Eq.
(2) writes that the rate of change in the concentration of the solute in the
stationary phase is proportional to the deviation from equilibrium, which
is valid only if the system is always close to equilibrium, i.e., provided that
the column efficiency is high.

In order to proceed further, we must complete this system of equations
by the initial and boundary conditions. The following condition simu-
lates the pulse injection of a pure compound, at a constant concentration
in the mobile phase stream, during a certain period of time:

. 0<t
c(O,t)={8° N (3)

Prior to this injection, the column was empty, which is expressed by the
initial condition:

q(x,0) =c(x,0) =0, x>0 (4)

Equations (1) to (4) constitute the simplest form of the general
mathematical model of chromatography. It includes a very simple kinetic
equation which, in fact, assumes that the system is always near
equilibrium. Otherwise, the kinetics of interphase equilibration would be
more complex than given by Eq. (2). As a matter of fact, detailed studies
of this kinetics, undertaken within the framework of the linear model,
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have resulted in extremely complicated sets of equations (16, /7). Besides
the adsorption kinetics which is described by Eq. (2), several stages of
diffusion are involved, especially the diffusion across the interface
between the mobile phase stream percolating through the column
packing and the stagnant mobile phase contained within the particles,
and the molecular diffusion inside the pores of these particles.

The model just described cannot be solved by an analytical expression
of the elution profile. A related model, formulated by Thomas (/8), has
been studied by Goldstein (19). Instead of Eq. (2), it uses Langmuir
adsorption kinetics. The relation between Eq. (2) and the Langmuir
kinetic equation, i.e., between the present model and Thomas’, has been
discussed by Hiester and Vermeulen (20). An analytical solution of the
Thomas model has been recently derived by Wade et al. (27). In the
general case, however, solutions of a kinetic model must be calculated
with the help of a computer.

Several general methods are available to calculate numerical solutions
of systems of partial differential equations such as the one discussed here.
Finite difference methods, finite elements methods, and collocation
could be used. Since the problem studied involves only one space
dimension, the column length, the computational speed is less critical
than with similar three-dimensional problems. We have opted for finite
difference methods which do not require fixed boundary conditions for
the column exit, as finite element methods do. There are several such
methods available, however, and we now compare two of them which we
have used.

2. Lax-Wendroff Finite Difference Equation

In this case the partial differential Egs. (1) and (2) are replaced by the
following algebraic, finite difference Eqgs. (5) and (6), respectively:

gt - gt -gq] ¢~ - we D
=0 (5)
and:
"' — g n n
T T K[f(ch) - q] (6)

T
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A program implementing this numerical solution has been written.
The results obtained are discussed in a later section.

3. The Characteristic Finite Difference Equation

In previous work we have used another numerical scheme for the
calculation of numerical solutions of the mathematical model of
chromatography by using the simplifying assumption called the ideal
model. This numerical scheme is based on the characteristic equation
10).

In the ideal model it is assumed that the column efficiency is infinite,
so changes in elution band profiles are due only to the thermodynamics
contribution, i.e., to the nonlinear behavior of the equilibrium isotherm.
The coefficient D in Eq. (1) is assumed to be zero, and Eq. (2) is replaced
by g = f(c). The results of this simulation have been published (/3), and
excellent agreement between these predictions and experimental results
have been demonstrated (22). The numerical errors made during the
calculation and which are due to the finite character of the time and
space increments which must be used, act as the contribution of a
diffusion coefficient. The conditions to be satisfied in order to permit the
simulation of real columns with a finite, albeit large, efficiency have been
discussed (23). This latter work constitutes the basis of the semi-ideal
model of chromatography and justifies the use of a finite difference
method for the numerical calculation of solutions of the chromato-
graphic model (24).

A finite difference equation, similar to Eq. (5), can be written for the
numerical calculation of solutions of Eq. (1). Now, of course, the axial
dispersion coefficient is no longer zero. The equation becomes

n+l

c" & —a”
4 +Fq’ L +u
T T h

a+l _

n o__ an
c; ¢ —c¢-, D

- ?(cj'-’“ - 2cf+¢j)=0
(7

Equation (6) is unchanged in this case.

4. Comparison between the Lax-Wendroff and the
Characteristic Scheme

The major difference between Egs. (5) and (7) is the introduction in the
former of an additional dispersion term which cancels out the effect of
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the artificial dispersion introduced by the finite character of the time and
space increments used for the numerical integration of the partial
differential Eq. (1), since

¢ =G _ Cni TG uh ¢y = 2¢] + o
T “T2h 2 h? ®)
and:
ﬂ_iﬁ>_ﬁ( -E)_M _
(2 )2\l =20 ©)

where ¢ is the Courant number and (uA/2)(1 —a) is the artificial
dispersion coefficient.

Accordingly, the accuracy of the numerical calculation performed
according to Eq. (5) is much better than that made following Eq. (7). The
numerical errors made with the Lax-Wendroff scheme are of the second
order, i.e., of the order of (A% + t%) (25). This means that the numerical
solutions of the model calculated using the Lax-Wendroff scheme are
relatively independent of the numerical values chosen for the time, t, and
the space, h, increments. The Lax-Wendroff scheme in the nonlinear
case, however, contains an additional term (25).

This is a necessary quality in a numerical scheme to be used for the
calculation of solutions of the system of Egs. (1) to (4), since Egs. (1) and
(2) contain the axial dispersion and the resistance to mass transfer
responsible for the finite efficiency of chromatographic columns. Then,
the characteristic scheme used for the calculation of numerical solutions
of the ideal model would give erroneous results. As shown above, this
scheme introduces first-order errors which can be adjusted to provide
approximate solutions of the ideal model which are in excellent
agreement with experimental results, because the first-order errors can
be adjusted, by a proper choice of the integration increments, to replace
the band-broadening contributions neglected in the ideal model (13, 22).
With a nonideal kinetic model, such as the one discussed here, these
contributions would be counted twice, which is not acceptable.
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5. Effect of Different Boundary Conditions

The previous discussion has illustrated the importance of dispersion
effects in chromatography. We cannot neglect the influence of axial
dispersion on band profiles during the migration of the sample bands
along the column. We cannot neglect it during injection either. Proper
boundary conditions are required in order to achieve a realistic
simulation of the band profile.

Two kinds of boundary conditions are classically used by chemical
engineers for problems of that type. The first one of these conditions is
the following:

clx = 0.1) = w(t) and ¢(x = o.¢) is finite (10)

It belongs to the first class of boundary conditions in mathematics. The
second type of conditions used is the Danckwerts boundary condition,
which belongs to the third class and is written as follows, in the present
case:

c—D§—£=d)(t), x=0
dx

11
dc/dx = 0, x=1L ()

While Eq. (10) does not consider diffusion during injection, it is taken
into account by Eq. (11). If we use a finite difference method, we may
write the first equation in the Condition (11) as follows:

uch— D0 = ¢ (12)

h

If D = 0, this condition degenerates into a condition of the first class.
From Eq. (12), we have

cg=%¢"—c'{<l—%> (13)

Obviously, different boundary conditions will lead to different band
profiles in nonlinear chromatography, since these conditions correspond
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to different injection bands. They will influence differently the formation
of concentration shocks or shock layers, the retention time, and the entire
profile. Figure 1 shows the profiles of one first-class injection (i.c., a
rectangular pulse with a maximum concentration C = 5 mM and a width

7.0

CONCENTRATION
3
()

|3

0.0

1 T 1 1 T T 1 i I

U
00 08 16 24 32 40 48 56 64 72 80
TIME

FIG. 1. Injection profiles corresponding to the different boundary conditions used. 1: First-
class condition (rectangular pulse). 2: Third-class condition, see Eq. (11), D = 0.04 cm?/s. 3:
Third-class condition. D = 0.08 cm¥s. 4: Third-class condition, D = 0.12 cm?/s.
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of 1 s) and of three different Danckwerts injections, with increasing
values of the diffusion coefficient. The similarity with the profiles
actually recorded for injection bands (26) is striking.

RESULTS AND DISCUSSION

The results of different simulations carried out using a program
implementing the Lax-Wendroff scheme for the calculation of numerical
solutions of the kinetic model of chromatography (Eqgs. 1 to 4) discussed
above are shown in Figs. 2 to 5. In each case, calculations were made for a
constant size sample, with decreasing values of the axial dispersion
coefficient. The sample size is large and the retention times are very
different whether the isotherm is linear (Figs. 3 and 5) or nonlinear (Figs.
2 and 4). The numerical values of the coefficients used in this work are
reported in Table 1. The retention times obtained for the simulated
profiles shown in Figs. 2 to 5 are reported in Table 2. Figures 2 and 3
correspond to a first-class boundary codnition; Figs. 4 and 5 to a third-
class one.

In all cases, with a linear or a nonlinear isotherm and with a first-ora
third-class boundary condition (injection), when starting from very large
values of the dispersion coefficient and reducing this coefficient pro-
gressively, we observe that the retention time increases with decreasing
dispersion coefficient (see Table 2 and Figs. 2 to 5). The major difference
between a linear and a nonlinear isotherm is that in the former case the
retention time always increases when the dispersion coefficient tends
toward zero (Figs. 3 and 5), while in the latter case the retention time
begins to decrease when the shock layer appears (see Figs. 2 and 4, axial
dispersion coefficient between 0.012 and 0.04 cm?¥/s) and continues to
decrease with decreasing value of the axial dispersion coefficient until
this coefficient becomes zero. This last effect is in agreement with the
prediction derived from the Houghton equation (4, /7). Nevertheless, the
influence of the dispersion coefficient, even in a wide range of variation,
is much smaller than that of the mass transfer coefficient (/3).

Comparison between Figs. 2 and 4 (or Figs. 3 and 5 in the linear case)
illustrates the influence of the boundary conditions (injection band
profile). With a third-class boundary condition (diffuse injection profile),
the retention times of the band maxima are larger than they are with a
first-class boundary condition (rectangular pulse) when the dispersion
coefficient is large. The effect reverses at low values of the axial
dispersion coefficient. The same variation of the difference between the
retention times of the bands obtained with a first- and a third-class
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FIG. 2. Band profiles for a nonlinear isotherm. Decreasing values of the axial dispersion

coefficient. First-class boundary condition (Eq. 10). Numerical values of the parameters in

Table 1. Retention times of the maximum of the bands in Table 2. 1: D = 0.120 cm?¥/s. 2:

D = 0.080 cm?¥s. 3: D = 0.040 cm?/s. 4. D = (2).012 cm?/s. 5: D = 0.008 cm?/s. 6: D = 0.004
cm*/s.
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TABLE 1
Experimental Conditions for the Simulations Reported in
Figs.2t0 §

Column length: $ cm inner diameter: 4.6 mm; phase ratio: 0.75
Flow velocity: 0.25 cm/s (2 mL/min)

Parameters of the Langmuir isotherm: a = 9,5 = (g = ac/(1 + bc))
Sample size: 0.41 mmol

TABLE 2
Influence of the Diffusion Coefficient on the Retention Time (s)?
Linear isotherm Nonlinear isotherm
First-class Third-class First-class Third-class

D boundary boundary boundary boundary
(cm?¥/s) condition condition condition condition
0.120 106.39 117.04 86.40 98.40
0.080 119.19 126.54 96.00 104.00
0.040 135.20 137.96 104.00 107.20
0.012 147.95 147.59 102.40 101.60
0.008 150.11 149.24 99.20 98.40
0.004 152.79 151.20 96.00 94.40

2Sample size: 1.53 mmol.

injection function is observed for a linear and a nonlinear isotherm (see
Table 2). The change in the sign of this difference is observed for
approximately the same value of the axial dispersion coefficient (~0.020
cm?/s) in both cases.

The data in Table 3 show that the same regressive variation of the
retention time is observed with a large change of the sample size. The
range of retention time varies with the sample size because, with a
Langmuir isotherm, the retention time of the band maximum decreases
with increasing sample size, but the relative variation of the retention
time remains comparable. Obviously, for a linear isotherm there is no
change in the direction of variation of the retention time with changing
sample size.

As pointed out in a previous section, the Lax-Wendroff scheme
includes only second-order errors, which makes the result relatively
insensitive to the values selected for the space and time increments in the
numerical integration. The artificial, numerical dispersion coefficient
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FIG. 3. Band profiles for a linear isotherm. Decreasing values of the dispersion axial

coefficient. First-class boundary condition (Eq. 10). Numerical values of the parameters in

Table 1. Numbers on curves, see Fig. 2. Retention times of the maximum of the bands in
Table 2.
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FiG. 4. Band profiles for a nonlinear isotherm. Decreasing values of the dispersion

coefficient. Third-class boundary condition (Eq. 13). Numerical values of the parameters in

Table 1. Numbers on curves, see Fig. 2. Retention times of the maximum of the bands in
Table 2.
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FIG. 5. Band profiles for a linear isotherm. Decreasing values of the dispersion coefficient.
Third-class boundary condition (Eq. 13). Numerical values of the parameters in Table 1.
Numbers on curves, see Fig. 2. Retention times of the maximum of the bands in Table 2.
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TABLE 3
Influence of the Diffusion Coefficient
and the Sample Size on the Retention

Time (s¥

Sample size (mmol)
D
(cm?¥/s) 041 1.53 3.26
0.120 100.87 86.40 70.25
0.080 112.98 96.00 77.01
0.040 12649 104.00 80.88
0.012 133.86 102.40 7543
0.008 133.55 99.20 7333
0.004 131.20 96.00 71.20

Nonlinear  isotherm, first-class
boundary condition.

associated with this scheme is zero. The comparison between Figs. 6 and
7 illustrates the difference between the Lax-Wenfroff and the character-
istic schemes. A threefold variation in the space increment of integration
results in the former case in a small shift of the profile without any
change of its shape or width. With the characteristic scheme it results in a
wider profile, corresponding to a three times larger column HETP, as
already observed (23, 24). This result is important for three reasons.

First, it confirms that the profiles obtained by the procedure described
here and which are illustrated by the results shown in Figs. 2 to 5 are
accurate. Second, it permits the use of relatively large increments for the
calculation of numerical solutions of the equation system, even when the
mass transfer kinetics is fast and the axial dispersion is small, i.e., for
high or very high efficiency columns. Such simulations were difficult or
impossible using the previous, characteristic scheme (7) because, in this
case, the computing time is proportional to the square of the efficiency of
the simulated column and becomes prohibitively long for columns
exceeding about 20,000 theoretical plates.

Finally, this method may permit an easy solution of the multicom-
ponent problem. Because there can be only one value used for the space
and the time increments during the calculation of the band profiles for a
multicomponent sample, the same values must be used for the derivation
of the whole chromatogram. On the other hand, the rules for the selection
of the values of these increments give different results when applied to the
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Fi1G. 6. Profiles obtained with the characteristic scheme for two different sets of integration
increments. T = 0.001 s. 1: H = 0.02 cm. 2: H = 0.06 cm.



12: 55 25 January 2011

Downl oaded At:

INFLUENCE OF AXIAL DISPERSION 827

x10™*
83.0

747
.

49.8 58.1
1 |

CONCENTRATION
215

Q
o

U ! T 1 | T 1 1
80 100 120 140 160 180 200 220 240
TIME

FIG. 7. Profiles obtained with the Lax-Wendroff scheme for two different sets of integration
increments (compare with Fig. 6). t = 0.001 s. 1: H = 0.02 cm. 2: H = 0.06 cm.
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different components of a mixture (23). This means that by selecting a
single set of values for the calculation, we assume a relationship between
the efficiency of the simulated column and the limit retention at infinite
dilution of the mixture components (27). The problem is minor when the
separation of closely eluted components of binary mixtures is investi-
gated, but become serious for the simulation of gradient elution. The use
of a Lax-Wendroff scheme permits a solution of this problem. Con-
versely, this approach is more complex and deliate, as the use of this
scheme requires that both the axial dispersion coefficient and a global
mass transfer resistance coefficient, which account together for the
column efficiency, be selected independently.

Oscillations seem to occur frequently in the numerical solutions of
partial differential equations, especially when high accuracy solutions
are searched for. The conditions which are prevalent in nonlinear
chromatography tend to favorize this phenomenon: discontinuous
boundary conditions, very fast mass transfer between phses (or even
infinitely fast mass transfers, e.g., in the ideal model), very small values of
the axial dispersion coefficient, strongly nonlinear isotherms, and choice
of small values of the integration increments because of physical
constraints. The Lax-Wendroff scheme we have used here permits the
minimization of the oscillations if it uses relatively large integration
increments and a continuous boundary condition. Furthermore, the
latter makes more physical sense since, whatever care is taken to achieve
a rectangular pulse injection, some extent of axial dispersion always takes
place in the transfer of the sample to the column. Most injection bands
are exponentially convoluted rectangular pulses or Gaussian profiles.
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